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An open-loop trajectory planning algorithm is presented for computing an input sequence that drives an
input-output system such that a reference trajectory is tracked. The algorithm utilizes only input-output data
from the system to determine the proper control sequence, and does not require a mathematical or identified
description of the system dynamics. From the input-output data, the controlled input trajectory is calculated in
a ‘‘one-step-ahead’’ fashion using local modeling. Since the algorithm is calculated in this fashion, the output
trajectories to be tracked can be nonperiodic. The algorithm is applied to a driven Lorenz system, and an
experimental electrical circuit and the results are analyzed. Issues of stability associated with the implemen-
tation of this open-loop scheme are also examined using an analytic example of a driven He´non map, problems
associated with inverse controllers are illustrated, and solutions to these problems are proposed.
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PACS number~s!: 05.45.1b, 47.52.1j, 07.05.Kf, 07.05.Dz
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I. INTRODUCTION

Numerous methods for the control of nonlinear syste
have been developed recently. In the control commun
some of the more popular methods include geometric con
methods based on methods from differential geometry~see
Ref. @1# for an introduction!, nonlinear model predictive con
trol @2#, and control based on neural networks@3#. In order to
use these methods for control, it is necessary to have
accurate description of the system dynamics. This model
be the result of physical knowledge of the system dynam
or the result of system identification. While these metho
are popular in the literature of the control community, diffe
ent methods of control have been pursued for the contro
chaotic systems.

Recently published methods of control for chaotic s
tems also build controllers based on a knowledge of the
tem dynamics. However, most of these methods rely o
knowledge of the underlying dynamics of the undriven, a
tonomous system@4–6#. The chaotic system is then stab
lized around an unstable periodic orbit or fixed point us
proportional linear feedback control. In the method of O
Grebogi, and Yorke~OGY! @4#, and a number of later modi
fications, a scalar-controlled input is changed at discr
times such that a periodic orbit or fixed point of the syst
becomes stable. The implementation of the OGY algorit
requires knowledge of the linearized dynamics of the p
odic orbit to be stabilized~a fixed point on the Poincar´
section! and the linearized dynamics which result from sm
perturbations to the controlled input about some nomi
561063-651X/97/56~3!/2398~9!/$10.00
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value. This information can be found by linearizing the u
controlled system dynamics and making small perturbati
in the controlled input. Since the goal trajectory in the st
space coincides with an existing unstable trajectory of
uncontrolled system, stabilization is achieved by infinite
mal perturbations of the input.

Other feedback methods~occasional proportional feed
back control@5#, continuous control@6#! also stabilize exist-
ing trajectories of the unforced system by making small p
turbations in the controlled input. While these methods~with
finite driving forces! in principle can be used to drive a sy
tem toward an orbit which is not a solution of the unpe
turbed system, they do not provide an algorithm for finding
driving signal necessary for producing and stabilization o
predefined orbit.

Another class of chaotic control schemes attempts to d
a system such that an arbitrary goal trajectory is tracked.
this end, open-loop~‘‘entrainment’’! control schemes have
been suggested@7–12#. Originally, entrainment control was
utilized on known dynamical systems where the control
inputs directly affect each state variable of the system@7#.
Later this method was generalized for reconstructed dyna
cal systems@9# and an arbitrary combination of inputs. How
ever, once again it was assumed that the inputs are ab
entirely specify the state of the dynamical system@10#.
Clearly, the number of controlled inputs cannot be less th
the state dimension of the underlying dynamical syst
when using this control scheme. Additionally, the stability
this open-loop control scheme cannot be guaranteed un
certain conditions are fulfilled. In particular, goal trajectori
2398 © 1997 The American Physical Society
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56 2399DATA-BASED CONTROL TRAJECTORY PLANNING FOR . . .
must be contained within ‘‘convergent’’ regions@8,10# of the
state space. A major problem with this method of contro
that the problem definition is somewhat artificial. In mo
physical systems ‘‘full-state control’’~control which directly
affects all the states! is not possible since some of the stat
of the system may not be directly affected by the input.

In the present study, the entrainment control appro
will be modified and extended in the following ways. First,
is assumed that the state-space system to be controlle
single input and single output, and equations describing
state-space dynamics are unknown. Since only a single i
to the system is assumed, ‘‘full-state control’’ is impossib
By choosing the proper input trajectory, the output of t
system should track a desired output trajectory. Finally,
the system to be controlled is assumed to be unknown,
proper input will be found using only an input-output tim
series from the system. This approach will be particula
useful for chaotic systems, where it can be difficult to det
mine a state-space model which accurately describes the
bal behavior of the system using standard methods of id
tification.

Since the method described below utilizes time-se
data from the system to compute the proper controlled in
this approach is called data-based control trajectory p
ning. In order to accomplish this task, input-output ident
cation data which characterize the dynamics of thedriven
nonlinear system are needed. The identification data con
of a time series collected from the driven system with ra
dom variations in the driving input. The set of goal trajec
ries which can be tracked by this control scheme should c
sist of the set of all trajectories which are possible for
driven system, which is larger than the set of trajectories
the undriven system. In this paper, input trajectories will
calculated off-line in an open-loop fashion. However, th
same method could be used for closed-loop control with o
minor modifications which will also be described.

Since the trajectory to be tracked may be unstable, i
possible that the computed open-loop control trajectory m
not stabilize the system. This is because it is difficult
exactly cancel the instability present in the trajectory of
open-loop system. In this case, additional closed-loop fe
back control may be necessary to stabilize the system.
also possible that the ‘‘inverse’’ mapping which produc
the open-loop control law may be unstable. This would le
us to believe that the dynamic system contains nonminim
phase behavior, and the system may exhibit problems v
similar to internal instability problems which can be found
linear systems when inverse controllers are used@13#. Both
of these problems will be illustrated and examined in m
detail in the examples.

II. METHOD

Consider the following nonlinear dynamical systems:

ẋ5 f ~x,u!, y5h~x!, ~1!

wherexPRd is a d-dimensional vector of state variables,u
is a scalar controlled input, andh:Rd→R is a measuremen
function. The goal of the trajectory planning algorithm is
s
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find a time seriesu0(t) which generates a specified outp
seriesy0(t) when applied to the system.

In control theory, a system is called ‘‘output contro
lable’’ when it is possible to use a controlled input to pr
duce any desired output@14#. While theorems exist which
allow us to determine the controllability of nonlinear system
@1#, these theorems are dependent on a state-space mod
the system. In situations where no state-space model~1! ex-
ists and only an input-output time series is available, de
mining whether a system is globally controllable is a pro
lem which has not been solved to the authors’ knowled
However, preliminary results in this area do exist. In a rec
paper@15#, a computational algorithm for computing contro
lable sets directly from time-series data is outlined. In t
work, it is simply assumed that the goal trajectories can
produced by an input trajectory in the examples.

In recent papers@16,17#, the Takens embedding theore
is extended to deal with input-output systems. Specifica
for system~1! future outputs can be generically represen
as a function of time-delayed versions of the input and o
put ~assuming the input remains constant between samp
times! as follows:

y~ t !5P@y~ t2T!,y~ t22T!, . . . ,y~ t2 lT !,

u~ t2T!, . . . ,u~ t2mT!] ~2!

whereT is an appropriate time delay~in theory, the choice of
T is arbitrary!, and l ,m>d11.

While this model is guaranteed to exist, for most physi
systems only identification is available and the exact form
the state-space dynamics~1! is unknowna priori. Addition-
ally since l ,m>d11 is only a sufficient~and not a neces
sary! condition for a model of the form~2! to exist, there
may bel andm smaller thand11 such that Eq.~2! exists.
For these reasons, a way of determining the smallest va
of l and m from input-output time-series data has been d
veloped using an extended version of the false-near
neighbors~FNN! algorithm@18#. Once the proper number o
embedded terms on the right-hand side of Eq.~2! has been
determined, the functionP can be described locally for pre
dictive purposes using nonlinear modeling techniques ba
on local polynomial predictors@16,19,20#. Given a known
input series, the system output could be predicted by
peated ‘‘one-step ahead’’ prediction.

For purposes of open-loop trajectory planning, the inp
sequenceu(t) should be determined as a function of a d
sired output sequencey(t). Using the implicit function theo-
rem, Eq.~2! can be locally inverted as

u~ t !5Q„y~ t1T!,y~ t !,y~ t2T!,y~ t22T!, . . . ,y@ t2~ l

21!T#,u~ t2T!, . . . ,u@ t2~m21!T#…. ~3!

Given they terms ~the values of the goal trajectory!, this
equation represents anm-dimensional nonautonomous ma
ping for the desired controlu. Just as in the case of modelin
the output dynamics~2!, this inverse map can be recovere
from the data by using local polynomial models in the spa
of delayed versions ofy andu. Once this map is determine
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2400 56RHODES, MORARI, TSIMRING, AND RULKOV
locally, it can be used to calculate the ‘‘one-step-ahea
control moveu(t) that will give the desired reference outp
y(t1T).

Two problems may be encountered utilizing this local
version process. First, it is possible that the control neede
produce the desired output is not contained in the data se
this case, further identification with an input signal whi
has either a larger magnitude range or a wider freque
range may be needed. Second, the mappingQ from Eq.~3! is
not guaranteed to be unique. For nonunique inverse m
pings only the data corresponding to one branch of the
verse map can be used for inverse modeling purposes~see
Fig. 1!. If the data from both branches are used for buildi
a model, the model will ‘‘average’’ the data from the tw
branches, and the resulting computed future control movu
will lie somewhere between the two branches. In this ca
the computed control move will not produce the desired
tion.

III. COMPUTATIONAL ALGORITHM

The goal of the computational algorithm presented her
to determine an input trajectory which will produce a desir
output trajectory when applied to the system. It will b
shown that the proper input trajectory can be computed
rectly in an open-loop fashion from an input-output tim
series of the system. Traditionally two distinct steps are co
pleted for controller design. First, input-output identificati
data are analyzed, and a model of the dynamics is form
Then a controller is designed using the identified model
the controller is implemented on the actual system. Her
controller will be designed which determines the input co
trol trajectorydirectly from input-output time-series data o
the system. This method of control is more computationa
intensive than open-loop control schemes which utilize fix
control laws; however, it may give better results for syste
with complicated dynamics where accurate identification
difficult.

While the computational algorithm does not need a glo
description of the dynamics, the number of delayed ter
needed to recreate the dynamics (l andm) is needed. From
this information, a local model of the dynamics in the neig
borhood around the desired trajectory is built utilizing tim
series data from the training set. By using data which

FIG. 1. Example of a nonunique inverse mapping for the in
u. Only a set of points which are close with regard to the inpuu
can be used here for the local linear approximation.
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‘‘near’’ to the desired dynamics@in the sense of distance i
the regression space defined by the right-hand side of
~3!#, a locally valid linear model of the dynamics is identifie
and the proper control move is computed. Once the pro
control move is calculated, the process is repeated. T
method is different from the OGY method@4#, since a local
linear model is formed for each sampling time of the syste
In the OGY method, the control move is implemented pe
odically and the trajectories to be tracked must also be p
odic. The method proposed here is not limited to track
periodic signals.

Here is an outline of the computational algorithm f
open-loop control trajectory planning.

~1! The data set is presorted using the method of Gra
berger@21# in order to reduce the search time needed by
algorithm. The training data are sorted into a tw
dimensional grid to save time when searching for neighb
within distance d of a given point in the spaceRl 1m.
The data are presorted into two-dimensional bins
the regression space of the mapping in Eq.~3!
†„y(t1T), y(t), . . . , y@ t2( l 21)T#, u(t2T), . . . ,u@ t
2(m21)T] …‡.

~2! For the first step, the inverse mapping is initialize
with an input sequence. Since the desired output trajec
y0(t) is known, the delay coordinate vectorz0(t)
5„y0(t1T),y0(t), . . . ,y0@ t2( l 21)T#,u0(t2T), . . . ,u0@ t
2(m21)T] … is needed to determine the first control mov
whereu0(t2T), . . . ,u0@ t2(m21)T# are the initialized in-
put terms. After the first step, the vectorz0 is formed from
the goal output trajectory and past inputs computed by
algorithm.

~3! The training time series is searched for points su
that iztrain(k)2z0(t)i`<d, where ztrain(k) consists of the
time-delay embedded data from the training set. This sea
is facilitated by the fact that the data are presorted. Po
from the time series which are neighbors are then arran
into a matrix containing the time-delay-embedded ter
ztrain(NN) and a vector of inputsutrain(NN) in the following
manner,

X5F z~NN1!

z~NN2!

A

z~NNp!

G
5F y~NN11T! y~NN1! ••• u~NN12~m21!T!

y~NN21T! y~NN2! ••• u~NN22~m21!T!

A A � A

y~NNp1T! y~NNp! ••• u~NNp2~m21!T!

G ,

~4!

u5F u~NN1!

u~NN2!

A

u~NNn!

G , ~5!

where z and u are deviation variables about the pointz0
which we are interested in. To solve for the unknown para

t
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56 2401DATA-BASED CONTROL TRAJECTORY PLANNING FOR . . .
eters in the linear model, a weighted least-squares proble
solved. Specifically, the least-squares problem

WXu5Wu ~6!

is solved foru, whereW is a diagonal matrix of weights~the
weightings consist of a radial-basis function which penali
distance fromz0). The desired input moveu0(t) is then cal-
culated from the following equation:

u0~ t !5z0u. ~7!

Note that this is a local linear approximation to Eq.~3!.
~4! t is increased and the previous two steps are repea

By repeating this process, the proper input trajectory is
termined one step at a time.

Since the algorithm builds a description of the dynam
locally about the trajectory to be tracked, a global descript
of the dynamics is not required.

While the algorithm above describes open-loop calcu
tion of the control law, closed-loop control could be pe
formed by modifying the delay coordinate vectorz0. For
closed-loop operation,z0 would take the form

z05„y0~ t1T!,yM~ t !, . . . ,yM@ t2~ l 21!T#,u0~ t

2T!, . . . ,u0@ t2~m21!T#…, ~8!

where theyM terms are the measured outputs from the s
tem. With this change, the control law could be calcula
online in a ‘‘one-step-ahead’’ manner. The only limitation
this closed-loop method is that the sampling time must
larger than the computation time needed to determine
next control moveu0(t).

Currently, the algorithm does not account for the possi
ity that the inverse mapping~3! may not be unique. Anothe
problem which could be encountered is an unstable inve
mapping~3!. This instability may result in an input which
becomes unbounded. If the dynamics of the system do
exactly cancel this input, the output behavior will not tra
the desired trajectory. However, as we will see in Sec. IV
is possible that inverse mappings which are unstable m
lead to acceptable results for open-loop control purposes
addition, the training set must cover the entire range of
puts needed for the proper control trajectory. There is c
rently no way to determine the proper range of inputsa pri-
ori. If the range of inputs is not large enough, there will
no ‘‘near neighbors’’ to the vectorz0, and a local linear
model cannot be built.

IV. APPLYING THE COMPUTATIONAL ALGORITHM

In this section, the computational algorithm will be a
plied to two examples. The first example is the simula
driven Lorenz equations. The second example describes
application of the computational algorithm to an experime
tal electronic circuit which exhibits chaotic dynamics.

A. Driven Lorenz model

In this section, the computational algorithm is applied
the following driven Lorenz system:
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ẋ5s~y2x!, ẏ52xz1rx2y1e@u~ t !2y#, ż5xy

2bz. ~9!

The parameter valuesr 545.62,b54, ands516.0, which
correspond to chaotic behavior of the undriven system,
used. System~9! has a controlled inputu(t) which appears

only in the equation forẏ. The output of the system isx(t),
and we would like to drive the system such that a desi
periodic trajectoryx0(t) is produced. For large values ofe, it
is expected from studies on synchronization that open-l
implementation of the computed control trajectory will b
stable@22#.

A control signal which causes the output to track the d
sired trajectory will be constructed from identification da
using the methods illustrated previously. First, the Lore
system is subjected to driving by a random input sig
utrain(t) obtained by passing white noise through a low-pa
filter @the cutoff frequency of the filter is taken to approx
mately correspond to the frequency range of intrinsic os
lations of x(t)#. utrain(t) and xtrain(t) are recorded using a
sampling time of 0.02, and the time series is of leng
50 000. The time delayT is found using average mutua
information analysis~see Ref.@20#! of the input-output data,
and the appropriate embedding dimensionsl 52, m52 are
calculated by applying the input-output false-neare
neighbors algorithm to the data. The identification data
used by the trajectory planning algorithm to form local i
verse maps of form~3!. A threshold distance ofd51.0 is
used to determine if points from the time series are con
ered as neighbors for the local modeling.

The data-based entrainment algorithm is used to calcu
the input for driving the system such that the output traj
tory x0(t)520 sin(0.523t)15 is produced. The value of th
parametere520.0~9! is used in this example, and the resu
are presented in Fig. 2. In Figs. 2~a! and 2~b! parts of training
setsutrain(t) andxtrain(t) are shown. Since the output traje
tory to be tracked is periodic, the trajectory planning alg
rithm is run until the input signal converges to a period
signal ~the initial transient is discarded!. Figure 2~c! shows
the control signalu1(t) obtained after the output of the da
based trajectory planning algorithm converges to a perio
signal. Figure 2~d! shows the desired output behaviorx0(t)
~dotted line! and the outputx1(t) produced by the Lorenz
system~9! when driven by the control signalu1(t) ~solid
line!.

A possible reason that tracking is poor near the ‘‘top’’
the sine wave is that the local linear mapping for the inpu
unstable for portions of the trajectory. It is expected that
data-based scheme will compute the exact inverse of the
renz system; however, if this inversion is not exact the s
tem will not track the desired output exactly. A plot of th
output and the location of the single pole of the local inve
mapping as a function of time are given in Fig. 3. Any tim
the pole is greater than 1, the inverse mapping is unsta
Notice that fairly long-term instability of the inverse map
ping appears to correspond to poor tracking of the des
output~seen from time 60 to 70!. However, the other region
of instability where the unstable pole is quite large~near time
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100! does not seem to affect tracking of the output possi
because the cancellation of the systems dynamics is ne
exact in this region of the dynamics.

Figures 4~a! and 4~b! show input and output time serie
for tracking of a more complicated signalx2(t)510 sin(t)
110 cos(0.5t)15. Again, a reasonably good reconstructi
of the desired output trajectory is achieved using only t
open-loop trajectory planning technique. In Fig. 5 the pre
ous experiment is repeated fore55.0 in system~9!. Here,
the computed control sequenceu2(t) does not accurately
track the desired output trajectory. Since the system does
converge to the desired periodic output trajectory, it appe
that the linearized dynamics around the desired trajec
may be unstable for this system. A possible remedy for
situation is to use a closed-loop feedback stabilization te
nique ~possibly the OGY method! in a periodic manner to
stabilize the dynamics about the desired trajectory.

FIG. 2. Data-based trajectory planning for Lorenz system~9!
with e520.0. The goal trajectory of the output variabl
x0(t)520 sin(0.523t)15. The inverted map was reconstructe
from test driving the Lorenz system by randomized input. A tim
series of length 50 000 was used, and the parameters of the m
were chosen:l 52 andm52. ~a! and ~b! Simultaneous time serie
of the inputu(t) and outputx(t) from the training time-series.~c!
Control sequence calculated using data-based trajectory plan
~d! Output signal resulting from the computed input signal.
y
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s
i-

ot
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B. Electronic circuit

In this section, the computational algorithm described
Sec. III will be applied to control the dynamics of a nonlin
ear electronic circuit in a physical experiment. In the expe
ment, a low-frequency~about 300 Hz! nonlinear circuit
whose diagram is shown in Fig. 6 is used. The circuit co
sists of a nonlinear converter, linear feedback, and an in
block. The nonlinear converter is implemented using ope
tional amplifier U1A and the multiplier U2. The shape of th
nonlinear functionF(w) generated by the converter wa
measured experimentally@see Fig. 7~a!#. The linear feedback
contains three integrators~U3A, U3B, and U3C! and sum-
mers~U3D and U1B! which create three-dimensional pha
space (x,y,z) of the nonlinear circuit. The input block is
built using OP amplifiers U4A and U4B. This section tak
signalsx(t) and the external inputu(t) to form the output
e@x(t)2u(t)#, which is applied to terminalA of the switch
SW1. The value of the parametere is determined by the
resistorRcont.

When the switch SW1 is in positionB, the circuit oper-
ates without external inputs@w(t)5x(t)# and generates cha

-
del

g.

FIG. 3. Illustration of instability of the inverse mapping. Th
pole of the local linear inverse is plotted as a function of time.

FIG. 4. Output tracking for goal dynamics consisting of tw
periodic components.
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56 2403DATA-BASED CONTROL TRAJECTORY PLANNING FOR . . .
otic oscillations. The projection of this chaotic attractor on
the plane@x(t),y(t)# is given in Fig. 7~b!. When switch
SW1 is in position A, the circuit is affected by the extern
input u(t). In position A, the input to the nonlinear convert
is w(t)5x(t)2e@x(t)2u(t)#. In this experiment,e50.8 is
used.

A band-limited random training signalutrain(t) is gener-
ated using a sampling rate of 1000 samples per second
this input is applied to the circuit. The inpututrain(t) and
output 2ytrain(t) of the system are recorded. This inpu
output time-series~30 000 points! is used by the algorithm
proposed before to construct the inputu(t) which will cause

FIG. 5. Tracking of the output signal of Fig. 4, for system~9!
with e55.0. In this case, the open-loop control cannot successf
track the output signal.

FIG. 6. The diagram of the nonlinear circuit used in the expe
mental studies.
l

nd

the nonlinear circuit to track a desired output trajecto
2y0(t). A portion of the training time series is given in Fig
8. When the time series is analyzed by the input-output fa
nearest-neighbors algorithm, it is found that the proper nu
ber of embedding terms isl 53, m52.

ly

-

FIG. 7. ~a! The shape of the nonlinear converter.~b! The pro-
jection of the chaotic attractor measured from the circuit with
sampling rate 1000 sample/s~SW1 in the position B!.

FIG. 8. Portion of the training time series for the nonline
circuit.
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The trajectory to be tracked for this example given in F
9 is nonperiodic. The goal output trajectory consists of a s
wave with varying amplitude~time 50–400 and 900–1100!,
a constant value~400–700!, and a piecewise linear signa
~700–900!. When this goal trajectory and the training set a
input to the trajectory planning algorithm using a neighb
threshold distanced50.25, the result is the input sequen
shown in Fig. 10. When this input sequence is used to d
the circuit, the measured output of the circuit tracks the g
trajectory quite well~see Fig. 11!. The major differences
between the goal trajectory and system outputs occur du
the transition which starts and ends the piecewise linear
nal at times 700 and 850. Since closed-loop control is
implemented in this example, the poor tracking at the
times is not corrected online.

This example shows that this trajectory planning meth
can accurately track signals which are nonperiodic. The in
signal is computed without any mathematical or identifi
description of the system dynamics. In addition, the out
trajectory is not an existing trajectory of the chaotic attract
This clearly demonstrates the difference between this p

FIG. 9. The desired goal trajectory for the nonlinear circuit.

FIG. 10. The computed input from the trajectory planning alg
rithm.
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posed method and other methods of chaos control base
stabilization of periodic orbits of a nonlinear system.

V. INVERSE MODELING AND CONTROL
OF THE HENON MAP

Issues of stability related to inverse modeling are be
illustrated by examining a simple analytical example w
discrete-time dynamics. Analytical inversion of the mod
system for control is a well-known method in the literatur
so the main purpose of this section is to emphasize probl
which could be encountered when using the data-based
jectory planning algorithm~which performs a local com-
puted inversion of the system!, and demonstrate methods fo
overcoming these problems. Consider the following driv
Henon maps:

xn11512axn
21yn1un , yn115bxn1cun , ~10!

where xn is an observable output, andun is a controlled
input. An exact ‘‘reconstructed’’ dynamical system in th
embedding space$xn ,un% takes the form

xn11512axn
21bxn211un1cun21 . ~11!

Suppose we would like to generate a period-2 output
quence$x1 ,x2 ,x1 ,x2 , . . . % with prescribed valuesx1 and
x2. Then we need to find a periodic sequence of inp
$u1 ,u2 ,u1 ,u2 , . . . % such thatx2k5x1 , x2k115x2. By alge-
braic manipulation, the solution is

u1,25~12c2!21@x2,1211ax1,2
2 2bx2,1

2c~x1,2211ax2,1
2 2bx1,2!#. ~12!

Suppose we use the inputsu1,2 from Eq. ~12! and input
them to the system in an open-loop fashion. With this cho
of u1,2 the periodic orbit of interest is a fixed point of th
map

-

FIG. 11. A comparison of the goal trajectory and the output
the circuit when the computed input from the trajectory plann
algorithm is applied.
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Y2m125P2~Y2m ,u2m11 ,u2m ,u2m21!

[P@P~Yn ,u2m ,u2m21!,u2m11 ,u2m#, ~13!

with u2m61[u1 , u2m[u2, Yn[$xn ,xn21%. This solution
can either be stable or unstable depending on the eigenva
of the Jacobian of system~13!, or equivalently Eq.~11!,
calculated over a periodic orbit,

DP25S 22ax1 b

1 0D S 22ax2 b

1 0D . ~14!

The region of stability on the plane (x1 ,x2) is defined by
two sets of hyperbolas~Fig. 12!. Inside this region the map
will be stable and the periodic control sequence~12! can be
used in open-loop fashion. This region of stability is equiv
lent to the convergent regions of Ref.@8#. Outside the stabil-
ity region, an additional closed-loop stabilization techniq
is needed@23#.

A modification of the pole placement method can be u
to stabilize this system~see, e.g., Ref.@24#!. In addition to
the two components of vectorY, an additional linear equa
tion for u2m is added so the system to be analyzed~13!
becomes

Y2m125P~Y2m ,u2m11 ,u2m ,u2m21!,

u2m125u11K•Y2m1g~u2m2u1!. ~15!

The control coefficients@K5(k1 ,k2) and g# can be calcu-
lated by specifying the eigenvalues of the Jacobian of
system@24#. In this example, all three eigenvalues are plac
at zero.

In Fig. 13, two examples of controlling a period-2 orbit
the driven Henon map are shown. Figure 13~a! demonstrates
the application of analytic open-loop control for the period
trajectory x150.3, x250.2. The eigenvalues of the ope
loop system about the desired trajectory are 0.978 and 0.
so the open-loop system is stable. Figure 13~b! shows that
open-loop control fails for the period-2 signalx150.3,

FIG. 12. Region of stability of the open-loop control of th
Henon map~10! in the plane of parametersx1 and x2 of the goal
trajectory fora51.4 andb50.3 ~unshaded!.
es

-

e

d

is
d

2,

x250.7. The eigenvalues of the open-loop system are 2.
and 0.041, so the open-loop system is unstable and will
produce the desired output trajectory. However, by us
pole placement feedback~closed-loop! control, the desired
trajectory can be stabilized, as seen in Fig. 13~c!.

In the previous examples, initial conditions in the neig
borhood of the trajectory to be tracked were utilized. Und
this assumption, the presented linear stability analysis sho
be valid. If the Henon map is driven under open-loop cont
from arbitrary initial conditions, the system could settle
an undesired orbit, as happens in Fig. 13~b! where the map
settles on a period-7 orbit. Simply waiting to start the cont
trajectory when the system comes close to the desired o
may not be feasible, since the desired trajectory may
belong to the attractor of the undriven system. For th
reasons, special care must be taken when bringing the sy
from arbitrary initial conditions to a desired trajectory.

The system could be brought from arbitrary initial cond
tions to the desired trajectory by computing the controlla
sets of a point on the trajectory. The timen controllable set
of a reference point in the embedded space consists of a
of points which can be controlled to that reference us
exactly n input moves@15#. By finding the smallest time
controllable set of a point on the reference trajectory,
inputs needed to drive the system to a point on the refere
trajectory in the shortest time are found.

This analytic example was presented in some detai

FIG. 13. ~a! Successful open-loop control of a period-2 orbit
the Henon map withx150.3 and x250.2. ~b! x150.3 and
x250.7—open-loop control fails.~c! Successful closed-loop contro
for x150.3 andx250.7, with feedback corrections calculated b
the pole placement method using Eq.~15! to stabilize the goal orbit.
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order to illustrate problems which may be encountered w
the data-based trajectory planning algorithm is applied. F
the inverse mapping reconstructed from the training d
may prove unstable, and then some other method may
needed to determine the proper input trajectory in an op
loop fashion. Second, the open-loop implementation of
computed control sequence may be unstable. In this c
some form of closed-loop tracking of the original contr
sequence will be required. The work on combining t
closed-loop stabilization with data-based trajectory plann
is in progress.

VI. CONCLUSIONS

In this paper an algorithm was presented which compu
a control trajectory which will drive a nonlinear system su
that a specified output trajectory is produced. This out
trajectory does not need to coincide with a trajectory of
undriven system, and the algorithm which was presented
computing the trajectory relies only on time-series data. T
main difference between our approach and other previo
published ‘‘entrainment control’’ methods is that noa priori
knowledge of the system is assumed. In addition, it is
l

s.

gn
n
t,

ta
be
n-
e
e,

g

s

t
e
or
e
ly

t

assumed that the inputs directly affect all states of the s
tem. We are interested in tracking a goal trajectory speci
only in terms of a~scalar! output signal. Accordingly, instead
of a full state control~which is rare in most physical system
of interest!, it is assumed that only a single input to th
system is available. When determining the proper input
jectory, a locally valid inverse model is constructed utilizin
time-series data from a training set. The inverse model~3! is
then used to determining the proper input trajectory in
open-loop one-step-ahead fashion.

Work for the future includes a closed-loop implemen
tion of the data-based control algorithm, application of t
algorithm to nonlinear systems which do not exhibit cha
and extension of these data-based control schemes fo
bustness.
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@7# A. Hübler, Helv. Phys. Acta62, 343 ~1989!.
@8# E. A. Jackson, Phys. Lett. A151, 478 ~1990!.
@9# J. L. Breeden, Phys. Lett. A190, 264 ~1994!.
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