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An open-loop trajectory planning algorithm is presented for computing an input sequence that drives an
input-output system such that a reference trajectory is tracked. The algorithm utilizes only input-output data
from the system to determine the proper control sequence, and does not require a mathematical or identified
description of the system dynamics. From the input-output data, the controlled input trajectory is calculated in
a “one-step-ahead” fashion using local modeling. Since the algorithm is calculated in this fashion, the output
trajectories to be tracked can be nonperiodic. The algorithm is applied to a driven Lorenz system, and an
experimental electrical circuit and the results are analyzed. Issues of stability associated with the implemen-
tation of this open-loop scheme are also examined using an analytic example of a dmamrkiep, problems
associated with inverse controllers are illustrated, and solutions to these problems are proposed.
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[. INTRODUCTION value. This information can be found by linearizing the un-
controlled system dynamics and making small perturbations

Numerous methods for the control of nonlinear systemsn the controlled input. Since the goal trajectory in the state
have been developed recently. In the control communityspace coincides with an existing unstable trajectory of the
some of the more popular methods include geometric contralncontrolled system, stabilization is achieved by infinitesi-
methods based on methods from differential geomé&ee  mal perturbations of the input.

Ref.[1] for an introductiof, nonlinear model predictive con- Other feedback method&@ccasional proportional feed-
trol [2], and control based on neural netwofRB$ In orderto  back control[5], continuous contrdl6]) also stabilize exist-
use these methods for control, it is necessary to have ang trajectories of the unforced system by making small per-
accurate description of the system dynamics. This model caturbations in the controlled input. While these meth@alith

be the result of physical knowledge of the system dynamicsinite driving force$ in principle can be used to drive a sys-
or the result of system identification. While these methoddem toward an orbit which is not a solution of the unper-
are popular in the literature of the control community, differ- turbed system, they do not provide an algorithm for finding a
ent methods of control have been pursued for the control ofiriving signal necessary for producing and stabilization of a
chaotic systems. predefined orbit.

Recently published methods of control for chaotic sys- Another class of chaotic control schemes attempts to drive
tems also build controllers based on a knowledge of the sysa system such that an arbitrary goal trajectory is tracked. To
tem dynamics. However, most of these methods rely on ¢his end, open-loof“entrainment”) control schemes have
knowledge of the underlying dynamics of the undriven, au-been suggesteld—12. Originally, entrainment control was
tonomous systenid—6]. The chaotic system is then stabi- utilized on known dynamical systems where the controlled
lized around an unstable periodic orbit or fixed point usinginputs directly affect each state variable of the sysi{é&iin
proportional linear feedback control. In the method of Ott,Later this method was generalized for reconstructed dynami-
Grebogi, and YorkéOGY) [4], and a number of later modi- cal system$9] and an arbitrary combination of inputs. How-
fications, a scalar-controlled input is changed at discretever, once again it was assumed that the inputs are able to
times such that a periodic orbit or fixed point of the systementirely specify the state of the dynamical systéi0].
becomes stable. The implementation of the OGY algorithnClearly, the number of controlled inputs cannot be less than
requires knowledge of the linearized dynamics of the perithe state dimension of the underlying dynamical system
odic orbit to be stabilizeda fixed point on the Poincare when using this control scheme. Additionally, the stability of
section and the linearized dynamics which result from smallthis open-loop control scheme cannot be guaranteed unless
perturbations to the controlled input about some nominatertain conditions are fulfilled. In particular, goal trajectories
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must be contained within “convergent” regiof8,10] of the  find a time seriesuy(t) which generates a specified output

state space. A major problem with this method of control isseriesyy(t) when applied to the system.

that the problem definition is somewhat artificial. In most In control theory, a system is called “output control-

physical systems “full-state control{control which directly lable” when it is possible to use a controlled input to pro-

affects all the statgss not possible since some of the statesduce any desired outp(ifi4]. While theorems exist which

of the system may not be directly affected by the input.  allow us to determine the controllability of nonlinear systems
In the present study, the entrainment control approachl], these theorems are dependent on a state-space model of

will be modified and extended in the following ways. First, it the system. In situations where no state-space mdglelx-

is assumed that the state-space system to be controlled iigs and only an input-output time series is available, deter-

single input and single output, and equations describing thenining whether a system is globally controllable is a prob-

state-space dynamics are unknown. Since only a single inpl#gm which has not been solved to the authors’ knowledge.

to the system is assumed, “full-state control” is impossible.However, preliminary results in this area do exist. In a recent

By choosing the proper input trajectory, the output of thepapef15], a computational algorithm for computing control-

system should track a desired output trajectory. Finally, asable sets directly from time-series data is outlined. In this

the system to be controlled is assumed to be unknown, theork, it is simply assumed that the goal trajectories can be

proper input will be found using only an input-output time produced by an input trajectory in the examples.

series from the system. This approach will be particularly In recent paper§l6,17], the Takens embedding theorem

useful for chaotic systems, where it can be difficult to deteris extended to deal with input-output systems. Specifically,

mine a state-space model which accurately describes the glésr system(1) future outputs can be generically represented

bal behavior of the system using standard methods of ideras a function of time-delayed versions of the input and out-

tification. put (assuming the input remains constant between sampling
Since the method described below utilizes time-seriesimes as follows:

data from the system to compute the proper controlled input,

this approach is called data-based control trajectory plan- y(t)=P[y(t—T),y(t—2T), ... y(t—IT),

ning. In order to accomplish this task, input-output identifi-

cation data which characterize the dynamics of dhigen

nonlinear system are needed. The identification data consist u(t=T), ... .ut=mT)] @

of a time series collected from the driven system with ran-

dom variations in the driving input. The set of goal trajecto-whereT is an appropriate time deldin theory, the choice of

ries which can be tracked by this control scheme should con¥ is arbitrary, andl,m=d+1.

sist of the set of all trajectories which are possible for the While this model is guaranteed to exist, for most physical

driven system, which is larger than the set of trajectories obystems only identification is available and the exact form of

the undriven system. In this paper, input trajectories will bethe state-space dynami¢d is unknowna priori. Addition-

calculated off-line in an open-loop fashion. However, thisally sincel,m=d+1 is only a sufficientand not a neces-

same method could be used for closed-loop control with onlysary) condition for a model of the fornf2) to exist, there

minor modifications which will also be described. may bel andm smaller thand+1 such that Eq(2) exists.
Since the trajectory to be tracked may be unstable, it ig-or these reasons, a way of determining the smallest values

possible that the computed open-loop control trajectory mapf | andm from input-output time-series data has been de-

not stabilize the system. This is because it is difficult toveloped using an extended version of the false-nearest-

exactly cancel the instability present in the trajectory of theneighbors(FNN) algorithm[18]. Once the proper number of

open-loop system. In this case, additional closed-loop feedembedded terms on the right-hand side of E).has been

back control may be necessary to stabilize the system. It idetermined, the functioRP can be described locally for pre-

also possible that the “inverse” mapping which producesdictive purposes using nonlinear modeling techniques based

the open-loop control law may be unstable. This would leatn local polynomial predictor§16,19,2Q. Given a known

us to believe that the dynamic system contains nonminimunnput series, the system output could be predicted by re-

phase behavior, and the system may exhibit problems veryeated “one-step ahead” prediction.

similar to internal instability problems which can be foundin  For purposes of open-loop trajectory planning, the input

linear systems when inverse controllers are Use]. Both  sequencau(t) should be determined as a function of a de-

of these problems will be illustrated and examined in moresired output sequenggt). Using the implicit function theo-

detail in the examples. rem, Eq.(2) can be locally inverted as
Il. METHOD u(t)=Q(y(t+T),y(t),y(t=T),y(t—=2T), ... y[t—(l
Consider the following nonlinear dynamical systems: —DTLu(t=T), ... ult=(m=1)T]). 3

Given they terms (the values of the goal trajectorythis
equation represents an-dimensional nonautonomous map-
ping for the desired contral. Just as in the case of modeling
wherexe RY is ad-dimensional vector of state variablas, the output dynamic$2), this inverse map can be recovered
is a scalar controlled input, antR—R is a measurement from the data by using local polynomial models in the space
function. The goal of the trajectory planning algorithm is to of delayed versions of andu. Once this map is determined

x=f(x,u), y=h(x), (1)
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“near” to the desired dynamicgn the sense of distance in

u the regression space defined by the right-hand side of Eq.
Neighborhood corresponding (3)], alocally valid linear model of the dynamics is identified
,-=~« to a single branch and the proper control move is computed. Once the proper
Lo / control move is calculated, the process is repeated. This
N method is different from the OGY methdd], since a local

linear model is formed for each sampling time of the system.
In the OGY method, the control move is implemented peri-
- odically and the trajectories to be tracked must also be peri-
- odic. The method proposed here is not limited to tracking
periodic signals.

Here is an outline of the computational algorithm for
open-loop control trajectory planning.

FIG. 1. Example of a nonunique inverse mapping for the input (1) The data set is presorted using the method of Grass-
u. Only a set of points which are close with regard to the input berger[21] in order to reduce the search time needed by the
can be used here for the local linear approximation. algorithm. The training data are sorted into a two-

dimensional grid to save time when searching for neighbors

locally, it can be used to calculate the “one-step-ahead’within distance 5 of a given point in the spac&' ™™
control moveu(t) that will give the desired reference output The data are presorted into two-dimensional bins in
y(t+T). the regression space of the mapping in E®)

Two problems may be encountered utilizing this local in-[(y(t+T), y(t), ..., y[t=(-=1)T], u(t=T), ... uft
version process. First, it is possible that the control needed to (m—1)T])].
produce the desired output is not contained in the data set. In (2) For the first step, the inverse mapping is initialized
this case, further identification with an input signal which with an input sequence. Since the desired output trajectory
has either a larger magnitude range or a wider frequencyo(t) is known, the delay coordinate vectogy(t)
range may be needed. Second, the map@riom Eq.(3)is = o(t+T),Yo(t), . . . Yol t—(1=1)T],ug(t—T), . .. uo[t
not guaranteed to be unique. For nonunique inverse map=(m—1)T]) is needed to determine the first control move,
pings only the data corresponding to one branch of the inwhereuy(t—T), ... Ug[t—(m—1)T] are the initialized in-
verse map can be used for inverse modeling purpéses put terms. After the first step, the vectry is formed from
Fig. 1). If the data from both branches are used for buildingthe goal output trajectory and past inputs computed by the
a model, the model will “average” the data from the two algorithm.
branches, and the resulting computed future control move  (3) The training time series is searched for points such
will lie somewhere between the two branches. In this casethat ||zin(K) — Zo(t)[l..< 8, where z,,(k) consists of the
the computed control move will not produce the desired actime-delay embedded data from the training set. This search
tion. is facilitated by the fact that the data are presorted. Points
from the time series which are neighbors are then arranged
into a matrix containing the time-delay-embedded terms
Zyain(NN) and a vector of inputsiy;i(NN) in the following

The goal of the computational algorithm presented here ignanner,
to determine an input trajectory which will produce a desired -
output trajectory when applied to the system. It will be Z(NNy)
shown that the proper input trajectory can be computed di- Z(NN,)
rectly in an open-loop fashion from an input-output time X= .
series of the system. Traditionally two distinct steps are com- )
pleted for controller design. First, input-output identification L Z(NNp)

z

Ill. COMPUTATIONAL ALGORITHM

data are analyzed, and a model of the dynamics is formed. NN+ T NN NN-—(m—1T
Then a controller is designed using the identified model and Y(NN3 1) y(NNy) U(NN; = (m—1)T)
the controller is implemented on the actual system. Here, a | Y(NN2+T)  y(NNp) -+ u(NNp—(m—1)T)

controller will be designed which determines the input con-
trol trajectorydirectly from input-output time-series data of

LY(NNp+T)  y(NNp) -+ Uu(NNp—(m—=1)T)

the system. This method of control is more computationally
intensive than open-loop control schemes which utilize fixed 4
control laws; however, it may give better results for systems
with complicated dynamics where accurate identification is u(NN,)
difficult. U(NNz)
While the computational algorithm does not need a global u= ] ) (5)
description of the dynamics, the number of delayed terms :
needed to recreate the dynamitsafdm) is needed. From u(NN,)

this information, a local model of the dynamics in the neigh-
borhood around the desired trajectory is built utilizing time-where z and u are deviation variables about the poirg
series data from the training set. By using data which arevhich we are interested in. To solve for the unknown param-
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eters in the Iingar model, a weighted least-squares problemis ; _ o(y—x), y=-xz+rx—y+eut)—y], z=xy
solved. Specifically, the least-squares problem
—bz 9
WX 6=Wu (6)

is solved ford, whereW is a diagonal matrix of weightdhe  The parameter values=45.62,b=4, ando=16.0, which
weightings consist of a radial-basis function which penalizegorrespond to chaotic behavior of the undriven system, are
distance frong,). The desired input movey(t) is then cal-  |,geq. Systent9) has a controlled inputi(t) which appears

culated from the following equation: only in the equation foy. The output of the system igt),

Uo(t) =200 @ and we would like to drive the system such that a desired
0 0% periodic trajectoryy(t) is produced. For large values efit
Note that this is a local linear approximation to E8). is expected from studies on synchronization that open-loop

(4) t is increased and the previous two steps are repeatelinPlementation of the computed control trajectory will be
By repeating this process, the proper input trajectory is destable[22].
termined one step at a time. A control signal which causes the output to track the de-

Since the algorithm builds a description of the dynamicssired trajectory will be constructed from identification data
locally about the trajectory to be tracked, a global descriptiorusing the methods illustrated previously. First, the Lorenz
of the dynamics is not required. system is subjected to driving by a random input signal

While the algorithm above describes open-loop calculauy,,(t) obtained by passing white noise through a low-pass
tion of the control law, closed-loop control could be per-filter [the cutoff frequency of the filter is taken to approxi-
formed by modifying the delay coordinate vectey. For  mately correspond to the frequency range of intrinsic oscil-

closed-loop operatiorg, would take the form lations of X(t)]. Uyain(t) and Xyain(t) are recorded using a
sampling time of 0.02, and the time series is of length

2o=(Yo(t+T),ym(t), ... ym[t=(I=1)T],up(t 50 000. The time delayl is found using average mutual

~T), ... ugft—(m=1)T]), ®) information analysigsee Ref[20]) of the input-output data,

and the appropriate embedding dimensiba®2, m=2 are

where they), terms are the measured outputs from the syspal_culated by applying the input-output false-nearest-
tem. With this change, the control law could be calculatedw'ghbors algor!thm to the d'ata. The.|dent|f|cat|on data'are
online in a “one-step-ahead” manner. The only limitation to used by the trajectory planning algorl_thm to form IOC"?“ In-

this closed-loop method is that the sampling time must pe/€rS€ maps of forn{3). A threshold distance 0b=1.0 is

larger than the computation time needed to determine thn‘ésed to deFermine if points from the ti_me series are consid-
next control movau(t) ered as neighbors for the local modeling.

Currently, the algorithm does not account for the possibil- The data-based entrainment algorithm is used to calculate

- - - : the input for driving the system such that the output trajec-

ity that the inverse mappin@) may not be unique. Another B : .

problem which could be encountered is an unstable invers®"Y Xo(t) =20 S'n(0'5.23)+5 1S pr_oduced. The value of the
parameteg=20.0(9) is used in this example, and the results

mapping(3). This instability may result in an input which S ) -
bec%l?negs unbounded. If th):a dyzamics of the sypstem do né'e presented in Fig. 2. In Figs(@and 2b) parts of training

exactly cancel this input, the output behavior will not tracksetsu”ain(t) andxtram(t) are ;hown. S"?CG the outpu_t trajec-
the desired trajectory. However, as we will see in Sec. IV, itto"Y (© be tracked is periodic, the trajectory planning algo-

; ; : : ; thm is run until the input signal converges to a periodic
is possible that inverse mappings which are unstable may. o X C 0 -
P bping %l‘gnal (the initial transient is discardedFigure Zc) shows

lead to acceptable results for open-loop control purposes. | . ,
addition, the training set must cover the entire range of iniN€ control signali; (t) obtained after the output of the data

puts needed for the proper control trajectory. There is curP@Sed trajectory planning algorithm converges to a periodic
rently no way to determine the proper range of inpassri- signal. F_|gure &) shows the desired output behavigy(t)

ori. If the range of inputs is not large enough, there will be(dotted 1iné and the outpuk,(t) produced by the Lorenz
no “near neighbors” to the vectozy, and a local linear SYStem(9) when driven by the control signal,(t) (solid

model cannot be built. line) , o o
A possible reason that tracking is poor near the “top” of

the sine wave is that the local linear mapping for the input is
IV. APPLYING THE COMPUTATIONAL ALGORITHM unstable for portions of the trajectory. It is expected that the
In this section, the computational algorithm will be ap- data-based scheme will compute the exact inverse of the Lo-

plied to two examples. The first example is the simulated®nZ System; however, if this inversion is not exact the sys-
driven Lorenz equations. The second example describes tf{gM Will not track the desired output exactly. A plot of the
application of the computational algorithm to an experimen-OUtpUt and the location of the single pole of the local inverse

tal electronic circuit which exhibits chaotic dynamics. mapping as a function of time are given in Fig. 3. Any time
the pole is greater than 1, the inverse mapping is unstable.

Notice that fairly long-term instability of the inverse map-
ping appears to correspond to poor tracking of the desired
In this section, the computational algorithm is applied tooutput(seen from time 60 to JOHowever, the other region

the following driven Lorenz system: of instability where the unstable pole is quite lafgear time

A. Driven Lorenz model
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Input for training data Desired and actual output
T T

150 T T T ™ T T

x(t)

20 40 60 80 100 120 140 160 180 200
(a) 0 20 40 60 80 100 120 140 160 180 200

Qutput for training data Pole of inverse function
T T T T

40

x(t)

Pole location

-10 L ) L L L L L L L
[ 20 40 60 80 100 120 140 160 180 200

(b) Time 0 20 40 60 80 100 120 140 160 180 200
Time

Computed input signal

FIG. 3. lllustration of instability of the inverse mapping. The
pole of the local linear inverse is plotted as a function of time.

u(t)

B. Electronic circuit

In this section, the computational algorithm described in
T h e e T T e Sec. Il will be applied to control the dynamics of a nonlin-
(c) ear electronic circuit in a physical experiment. In the experi-
ment, a low-frequency(about 300 Hf nonlinear circuit
whose diagram is shown in Fig. 6 is used. The circuit con-
sists of a nonlinear converter, linear feedback, and an input
block. The nonlinear converter is implemented using opera-
tional amplifier ULA and the multiplier U2. The shape of the
nonlinear functionF(w) generated by the converter was
e meas_ured expe.rimentalﬂgee Fig. 7a)]. The linear feedback
(d) Time contains three integrato®J3A, U3B, and U3Q and sum-
mers(U3D and U1B which create three-dimensional phase
FIG. 2. Data-based trajectory planning for Lorenz syst®n space X,y,z) of the nonlinear circuit. The input block is
with €=20.0. The goal trajectory of the output variable, built using OP amplifiers U4A and U4B. This section takes
Xo(t)=20sin(0.528)+5. The inverted map was reconstructed signalsx(t) and the external inputi(t) to form the output
from test driving the Lorenz system by randomized input. A time- ¢[ x(t) —u(t)], which is applied to terminah of the switch
series of length 50 000 was used, and the parameters of the modgln/1. The value of the parameteris determined by the
were c.hosent=2 andm=2. (a) and(b) Simqltgnequs timg series resistorRgnt.
of the inputu(t) and outputx(t) from the training time-seriesc) When the switch SW1 is in positioB, the circuit oper-

Control sequence calculated using data-based trajectory planning.[es without external inpufsv(t) =x(t)] and generates cha-
(d) Output signal resulting from the computed input signal.

Computed input signai

60 T T T T T

100 does not seem to affect tracking of the output possibly

because the cancellation of the systems dynamics is nearly _

exact in this region of the dynamics. =
Figures 4a) and 4b) show input and output time series

for tracking of a more complicated signaj(t) =10 sin)

+10 cos(0.5) +5. Again, a reasonably good reconstruction ~40, = ™ = o o o
of the desired output trajectory is achieved using only this A
open-loop trajectory planning technique. In Fig. 5 the previ- a0 : Desfed and zolual output ,

ous experiment is repeated fer5.0 in system(9). Here,

the computed control sequencg(t) does not accurately
track the desired output trajectory. Since the system does no
converge to the desired periodic output trajectory, it appears
that the linearized dynamics around the desired trajectory

—
g’

=
B

may be unstable for this system. A possible remedy for this o 50 100 150 200 250 300
situation is to use a closed-loop feedback stabilization tech- Time
nique (possibly the OGY methgdin a periodic manner to FIG. 4. Output tracking for goal dynamics consisting of two

stabilize the dynamics about the desired trajectory. periodic components.



Computed input signal
T

L

s

200

100 150 250 300

Desired and actual output

L L L
150 200 250

Time

x
100 300

FIG. 5. Tracking of the output signal of Fig. 4, for systéf

with €=5.0. In this case, the open-loop control cannot successfully

track the output signal.

otic oscillations. The projection of this chaotic attractor onto
the plane[x(t),y(t)] is given in Fig. 7b). When switch
SWL1 is in position A, the circuit is affected by the external
inputu(t). In position A, the input to the nonlinear converter
is w(t)=x(t) — e[x(t) —u(t)]. In this experimente=0.8 is
used.

A band-limited random training signal,.,i(t) is gener-

ated using a sampling rate of 1000 samples per second and

this input is applied to the circuit. The inpuk,,,(t) and
output —Y.in(t) of the system are recorded. This input-
output time-serie$30 000 points is used by the algorithm
proposed before to construct the inuft) which will cause

FIG. 6. The diagram of the nonlinear circuit used in the experi-
mental studies.

DATA-BASED CONTROL TRAJECTORY PLANNING FOR ...

2403

5.0

3.0

1.0

F(w) [V]

-1.0

10 00 1.0 20 30 40
w V]

3.0

1.0 -
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-5.0
-3.0

1.0 00 10 20 80 40
X(t) [V]
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FIG. 7. (a) The shape of the nonlinear convertés) The pro-
jection of the chaotic attractor measured from the circuit with the
sampling rate 1000 sample/SW1 in the position R

the nonlinear circuit to track a desired output trajectory
—VYo(t). A portion of the training time series is given in Fig.
8. When the time series is analyzed by the input-output false-
nearest-neighbors algorithm, it is found that the proper num-
ber of embedding terms is=3, m=2.

Input training signal

1.5F b
g .
0.51
0 10 20 30 40 50 60 70 80 90 100
Time
Qutput training signal
2 T T T T T T T T
1F 4
£ of 1
t
-1}
- . s s . . . : . .
0 10 20 30 40 50 60 70 80 90 100
Time
FIG. 8. Portion of the training time series for the nonlinear

circuit.
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Resulting output trajectory
T T T T

Desired output trajectory
T T T T

— System output
- — Goal trajectory

151

-yt

1t

L

700

L

800

800

, |
500 600
Time

500 800 700 300 1000 100 200 300 400 900 1000
Time

0 1(IJO 2(I)0 3(I)O 4(I)0
FIG. 11. A comparison of the goal trajectory and the output of

the circuit when the computed input from the trajectory planning
The trajectory to be tracked for this example given in Fig.algorithm is applied.

9 is nonperiodic. The goal output trajectory consists of a sine

wave with varying amplitudétime 50—400 and 900-1100 posed method and other methods of chaos control based on

a constant valu¢400-700, and a piecewise linear signal stabilization of periodic orbits of a nonlinear system.

(700-900. When this goal trajectory and the training set are

FIG. 9. The desired goal trajectory for the nonlinear circuit.

input to the trajectory planning algorithm using a neighbor
threshold distanc&=0.25, the result is the input sequence

V. INVERSE MODELING AND CONTROL
OF THE HENON MAP

shown in Fig. 10. When this input sequence is used to drive

the circuit, the measured output of the circuit tracks the goal

Issues of stability related to inverse modeling are better
illustrated by examining a simple analytical example with

trajectory quite well(see Fig. 11 The major differences
: y 9 ( g- 11 J iscrete-time dynamics. Analytical inversion of the model

between the goal trajectory and system outputs occur durin ; ¥ -k hod in the li
the transition which starts and ends the piecewise linear si ystem for control is a well-known method In the literature,

nal at times 700 and 850. Since closed-loop control is not® the main purpose of this section is to emphasize problems

implemented in this example, the poor tracking at thesdVhich could be encountered when using the data-based tra-

times is not corrected online Jectory planning algorithm(which performs a local com-
This example shows that this trajectory planning methooOUted inversion of the systémand demonstrate methods for

can accurately track signals which are nonperiodic. The inpuVercoming these problems. Consider the following driven

signal is computed without any mathematical or identified™1€NON Maps:
description of the system dynamics. In addition, the output
trajectory is not an existing trajectory of the chaotic attractor.
This clearly demonstrates the difference between this pro-
where x,, is an observable output, ang, is a controlled
input. An exact “reconstructed” dynamical system in the
embedding spacgx, ,u,} takes the form

Xni1=1—axt+y,+tU,, Yni1=bX,+cu,, (10)

Computed input trajectory

Xns1=1—axt+bx,_;+Uy+CUy_;. (11
Suppose we would like to generate a period-2 output se-

quence{Xy,Xy,X1,Xz, . . .} with prescribed valuex; and

X,. Then we need to find a periodic sequence of inputs

{uq,Us,Uq,Uy, ...} such tha,, =X, Xoxs1=X,. By alge-

braic manipulation, the solution is

u(t)

05

Uy o=(1—c?) Y xp1— 1+ axiz_ bX; 1

—C(Xy o~ 1+ax5 ;—bxy o). (12

'

100

400

-1 \ . . . . .
500 600 700 800 900 1000
Time

200 300 Suppose we use the inputs , from Eq. (12) and input
them to the system in an open-loop fashion. With this choice
. 10. The computed input from the trajectory planning algo-of u, , the periodic orbit of interest is a fixed point of the

map

FIG
rithm.
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FIG. 12. Region of stability of the open-loop control of the 0 100 200
Henon map(10) in the plane of parameters andx, of the goal 1.0 J -
trajectory fora=1.4 andb=0.3 (unshadef [*om .
Yom+2=Pa(Yam,Uzm+1,Uzm, Uzm—1) < o0
s 00} _
=P[P(Yp,Uzm,Usm-1),Uam+1,Uzm], (13
With Upp«1=Uy, Upn=U,, Y, ={X,,X,_1}. This solution
can either be stable or unstable depending on the eigenvalue ;4

of the Jacobian of systertil3), or equivalently Eq.(11), 0 100 200

calculated over a periodic orbit, FIG. 13. (a) Successful open-loop control of a period-2 orbit of

the Henon map withx;=0.3 and x,=0.2. (b) x;,=0.3 and
(14) X,=0.7—open-loop control failgc) Successful closed-loop control

for x;,=0.3 andx,=0.7, with feedback corrections calculated by

the pole placement method using E#5) to stabilize the goal orbit.

DP=1 1 o/l 1 o)

—2ax, b) ( —2ax, b)

The region of stability on the plane{,x,) is defined by )
two sets of hyperbola&Fig. 12). Inside this region the map X2=0.7. The eigenvalues of the open-loop system are 2.206
will be stable and the periodic control sequerit®) can be and 0.041, so the open-loop system is unstable and will not
used in open-loop fashion. This region of stability is equiva-Produce the desired output trajectory. However, by using
lent to the convergent regions of RE]. Outside the stabil- Pole placement feedbadkclosed-loop control, the desired
ity region, an additional closed-loop stabilization techniquetrajectory can be stabilized, as seen in Figic13 _
is needed23]. In the previous examples, initial conditions in the neigh-
A modification of the pole placement method can be used0rhood of the trajectory to be tracked were utilized. Under
to stabilize this systenisee, e.g., Ref[24]). In addition to  this assumption, the presented linear stability analysis should
the two components of vectdf, an additional linear equa- D€ valid. If the Henon map is driven under open-loop control
tion for u,, is added so the system to be analyza@)  from arbitrary initial conditions, the system could settle on

becomes an undesired orbit, as happens in Fig(ld3vhere the map
settles on a period-7 orbit. Simply waiting to start the control
Yom+2=P(Yom,Usms1,Uom,Usm—1), trajectory when the system comes close to the desired orbit
may not be feasible, since the desired trajectory may not
Upmio=U;+ K- Yo+ g(Usn—Uy). (15)  belong to the attractor of the undriven system. For these

reasons, special care must be taken when bringing the system

The control coefficient§K =(k;,k,) andg] can be calcu- from arbitrary initial conditions to a desired trajectory.
lated by specifying the eigenvalues of the Jacobian of this The system could be brought from arbitrary initial condi-
system 24]. In this example, all three eigenvalues are placedions to the desired trajectory by computing the controllable
at zero. sets of a point on the trajectory. The timecontrollable set

In Fig. 13, two examples of controlling a period-2 orbit in of a reference point in the embedded space consists of a set
the driven Henon map are shown. Figurda@2lemonstrates of points which can be controlled to that reference using
the application of analytic open-loop control for the periodicexactly n input moves[15]. By finding the smallest time
trajectory x;=0.3, X,=0.2. The eigenvalues of the open- controllable set of a point on the reference trajectory, the
loop system about the desired trajectory are 0.978 and 0.09Bputs needed to drive the system to a point on the reference
so the open-loop system is stable. Figurébl3hows that trajectory in the shortest time are found.
open-loop control fails for the period-2 signal,=0.3, This analytic example was presented in some detail in
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order to illustrate problems which may be encountered whemassumed that the inputs directly affect all states of the sys-
the data-based trajectory planning algorithm is applied. Firstem. We are interested in tracking a goal trajectory specified
the inverse mapping reconstructed from the training datanly in terms of ascalay output signal. Accordingly, instead
may prove unstable, and then some other method may bef a full state controlwhich is rare in most physical systems
needed to determine the proper input trajectory in an opemsf interes}, it is assumed that only a single input to the
loop fashion. Second, the open-loop implementation of thesystem is available. When determining the proper input tra-
computed control sequence may be unstable. In this casgctory, a locally valid inverse model is constructed utilizing
some form of closed-loop tracking of the original control time-series data from a training set. The inverse m@8jeis
sequence will be required. The work on combining thethen used to determining the proper input trajectory in an
closed-loop stabilization with data-based trajectory planningppen-loop one-step-ahead fashion.

is in progress. Work for the future includes a closed-loop implementa-
tion of the data-based control algorithm, application of the
algorithm to nonlinear systems which do not exhibit chaos,

] ) ) and extension of these data-based control schemes for ro-
In this paper an algorithm was presented which computegstness.

a control trajectory which will drive a nonlinear system such
that a specified output trajectory is produced. This output
trajectory does not need to coincide with a trajectory of the
undriven system, and the algorithm which was presented for The authors are indebted to Henry Abarbanel and Reggie
computing the trajectory relies only on time-series data. Thérown for useful discussions. Partial support from the De-
main difference between our approach and other previouslpartment of EnergyGrant No. DE-FG03-95ER1451&nd
published “entrainment control” methods is that agriori Electric Power Research Institu(@ran) No. WO8015-11
knowledge of the system is assumed. In addition, it is notare gratefully acknowledged.

VI. CONCLUSIONS
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